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Abstract

Oscillators are affected by drifts (linear phase drift, linear frequency drift, i.e. quadratic phase
drift) and different types of noise according to the power law model of power spectral density
(from f~2 to f*? frequency noise, i.e. =% to f° phase noise). Generally, for long-term instability
characterization (duration greater than one hour), drift coefficients are estimated by using least
squares whereas noise levels are obtained from the residuals by using variances (AVAR, MVAR,
TVAR, ..).

However, the low frequency noises, such as random walk FM, induce very long term fluctua-
tions which may be confused with deterministic drifts. This effect, due to the non-stationarity of
these noises, depends on the low cut-off frequency which must be introduced in order to ensure
power convergence for low frequencies. We calculate the standard deviation of ”artificial” drifts
due to long-term random fluctuations, versus the noise levels.

The first interest of these results concerns the estimation of the measurement uncertainty of
drift coefficients : knowing the noise levels of an oscillator we calculate the standard deviation
of the artificial drift coefficient due to these noises; thus, if a “real” deterministic drift is iden-
tified in the signal, its coeflicients are determined plus or minus the artificial drift coefficients.
The standard deviation of the artificial drift coefficients may be considered as the measurement
uncertainty of the deterministic drift coefficient.

The second interest concerns the predictability of an oscillator affected by a deterministic
drift. Thus, the knowledge of the drift coefficient uncertainties yields a criterion for quantifying
the reliability of a time error prediction.

1 INTRODUCTION

We consider a sequence of frequency deviation samples composed of a deterministic part, i.e. a
linear frequency drift, and a random part:

y(ty) = Citk + Co + €. (1)

An estimation by least squares yields estimates Co and €y of the real coefficients Co and Cj.
Denoting the interpolated samples by §(t), we obtain:

9(te) = Cite + Co. (2)
The residuals are defined as:
ex = y(tx) — (tx) (3)
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1.1 Random Fluctuations and Deterministic Drifts

The instantaneous frequency is defined from the nominal frequency and the frequency deviation
samples by:

Ve = vp (1+ yx) (4)

If the sequence y; is not centered, there are two possibilities:

o the real nominal frequency is different from the assumed nominal frequency: this is a problem
of inaccuracy of the oscillator;

e there are long.term random fluctuations (with period much longer than the duration of the
sequence) which are seen as constant over the sequence(1]

The same problem may occur with linear frequency drift.
It is impossible to distinguish a “true” deterministic drift from a “false” random drift.

1.2 Statement of the Problem
The Power Spectral Density (PSD) may be modelled as:

+2
Sy(f)= Y ha.fe (5)

a=-2

e If no deterministic drift exists, whatn are the relationships between the noise levels hq and the
estimated drift coefficients Cy and Cy?

o If a deterministic drift exists, what are the uncertainties of the estimated drift coefficients &
and C1?

e In both cases, what is the Time Interval Error (TIE) due to an extrapolation of the linear
frequency drift?

2 LINEAR REGRESSION

2.1 Coefficient Calculation

We consider N measurements (ti, vi): {(to,%0),- -, (tn-1, YN-1)}, regularly spaced with a sampling

period To:
tr, =tog+ k.79 (6)
We need to know the coefficient of the linear model:
vk = Citp + Co + ek (7)
The most probable coefficient values, in the sense of the least squares, are given by:
5 202N -1 -6 -
= —z i+ —— t;.y; 8
= T i=0y+N(N+1)7-012. y (®)
- —@ 12
Cil=—r— 5 t;.y; 9
! N( +1)T0;y+N(N—1)(N+1)T02§; Y ®)
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2.2 Estimation of the Uncertainties

From (8) and (9), it is possible to calculate 02(Cq) and o2(Cy):

a*(Co) = N(;_%;i-il_ (Zyz) m (thyz)

N-1)
z\?j((zi+1 N T Cor (v Lty (10)

5 144
o) = N_(W‘ﬁ"‘f%‘o" F(Ew)+ ey ()

144
TN DM TR (o Xtw) (1)

with

o (L) = X wiw) (12)
a? (Z ti-yi) =70° Z Zi-j-(yi-yj> (13)
Cov (v Do tiwi) =703 D i-(yi-us) (14)

where ( ) denotes an average over an infinite number of identical processes (ensemble average).

2.3 Correlation of the Samples

Sy(f) R,-,-l(with L # J) ll:lﬁ
h_g.f? - [—l + 72|t — 4] J 7‘;2-
h_l.f_1 —h_y [C + 11’1(27Tf1) + lnltj - t,'|] —h_1 ln(QTofz)

ho.f° 0( ) hofn

~H¥ Y -1 fn?

hyy fHt (— L
+1-f +1 2t — 1) +175

3

hn 42 L frcos[2m fi(t; — t;)] b fn®
+2.f +2 2722, — 1) +27g

Table 1: Correlations of the y, samples versus the noise levels A,. C is the Euler constant: C ~
0,5772. Assuming a sampling satisfying the Shannon rule, the high cut-off frequency is f = ﬁ
fi is the low cut-off frequency.

The PSD S5, (f) is the Fourier Transform of the autocorrelation function. Thus, if no real drift exists
in the sequence, we have:
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+oo .
W) = [ SE(peranstegs

= _/0+°o Sy(f) cos[2n f(t; — t;)]df = Ry; (15)

which leads to the results given in Table 1.

2.4 Mean Value Subtraction

Table 1 shows that, for low frequency noises (=2 and f~! FM), the correlations of the samples
depend on the low cut-off frequency f;. This cut-off frequency must be introduced in order to ensure
the power convergence.

If the inverse of the low cut-off frequency is much larger than the duration of the sequence [0, tn],
the very long term fluctuations (period = %) are seen as a constant(1] (see Figure 1).

On the other hand, the subtraction of the mean value of the sequence cancels the dependence on f.
Denoting the mean value of the sequence by § and the centered sequence samples by y}:

1 N=1 :

=% (16)
]-.0

Yo=Yk~ G (17)

The subtraction of the mean value is equivalent to a correction of the nominal frequency by a factor
1+ g)

v = vo(1+ ) (1 +y}) (18)
After subtraction of the mean value, it follows that:
N-1
doui=0 (19)
=0
N + 1
E tiyl =10 [Zz Yi— —— yJ] (20)
=0 J
Thus:
. N{N 41
(Zt1 yz) —7‘0 {ZZL]RU N+1)Zzz'Rij+“(T_)ZZR"j (21)
i i g
Considering the new linear frequency drift model:
yp = Clite + Ch + ¢}, (22)
we have:
o2
(Co) = TVW (Zt yz) (23)
2ty 144
) = T () (24)

It may be demonstrated that C} = Cy and then ¢2(C}) = o(C}).
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2.5 Estimation of the Residuals
The differences between the estimated drift and the y; samples are:

er =y — Cite — Co (25)
The variance of the residuals is given by:

N — 1)(2N — 1)ry?
6

—-%Cov (Z yk,C'o) - %Cov (E tk-yk,C1) + (N ~ 1)70Cov (Co, Ch) (26)

o*e) = o)+ o*(Cy) + 0*(Co)

The residuals don’t depend on the subtraction of the mean value:

er = yk — City ~ Co = y; — Cits, - C (27)
3 RESULTS
Sy (f) a(Co) 7(Ce) o(C1) o(e)

_ h_a 3n2rh_» 1272h_; 2n2r
haf B \/_“"5'_ \/ 57 15 2
ey \/[g - im (2sz)] hes 3"27;‘1 3"7““‘ [C+In(rr)] A

[2ho 3ho 6ho [ho
ho.f° - = 5 700 = Frho
2
B fH \/ 5[1.37 + 71:(722 Fa)] har \/ 9[1.27 +21:g Z,,T)] hi \/ 18[1.27 +,,]f§ far)] Byt f% -
i In(2)h / In / 3
hia. f12 Ithwz.Ez) 32 L 72(32) Aes 36fh,‘1,lzlg)h+2 f%hn

Table 2: Standard deviation of the drift coefficients and of the residuals versus the noise level b,
and the duration of the sequence 7. The high cut-off frequency is f5 = ~2~,1;-5 and the low cut-off
frequency is fi.

Thus, after measuring the h, noise levels, we may estimate the uncertainties ¢(Co) and ¢(C;) by
using Table 2.

This table shows that the subtraction of the mean value cancels the dependence of Cy on f;. For

high frequency noises, o(Cp) remains very close to o(Ch). Moreover, neither o(C1) nor o(e) are
modified by this subtraction.

3.1 Measurement Uncertainties of Drift Coefficients

If no real deterministic drift exists, the determination of the drift coefficients yields:

~20(Co) < Cy < 20(Co)
-20(Cy) < €1 < 20(Cy)

with 95.5% confidence
with 95.5% confidence
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Thus, measuring a drift coefficient C' within the interval [-20(C),+20(C)] is compatible with a
null drift hypothesis (with a risk of the second kind of 4.5%).

On the other hand, if a real deterministic drift exists, the estimates C and & converge toward the
real coefficients Cy and Cjy:

<C'o> = Co and <él> = Cl.
The uncertainty domains of the coefficients Co and C; are:

Co=Co+£20(Cy) with 95.5% confidence

C1=C1 £20(Cy) with 95.5% confidence

3.2 Frequency and Time Error Prediction
3.2.1 Frequency error prediction

If Co and &, are estimated over a sequence of IV samples (duration 7 = Nrg), what error results
from an extrapolation of the linear model to ty + 77

§tn +T) = Cr.tn + T) + Co (28)
The Total Frequency Error (TFE) may be defined as:
TFE(T) = y(ty +T) - §(tn +T) (29)
The TFE is composed of a Deterministic Frequency Error (DFE):
DFE(T) = (C1 - C1)(tn +T) ~ (Co - Co) (30)
plus a random error (see Figure 2):
TFE(T)=DFE(T)+ y-(tn + 1) (31)

y»(t;) is a centered random variable without drift, with a variance o%(y,) = Ry;.
Thus, denoting ¢’ =ty + T, we obtain:

(TFEX(T)) = o*(Co)+o”(C1)-t"? + o*(y,)
—2C0ov (Co, y-(t')) — 2Cov (Cy, y» (') t' + 2Cov (Co, Cy) .t/ (32)

Cov (Co, yr(t')) is the covariance between the parameter Cy estimated over the sequence [to, tn] and
the random sample y, at the date t’' =ty + 7.

3.2.2 Time error prediction

If a sequence of z(tx) is known over a duration = (from to to ty = to + T), the Time Interval Error
(TIE) at ty + T may be defined as [2, 3]:

TIE(T) = o(tn +T) - 2(tw) - Tz (33)
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with

= 1 [tv+T
ytN,T T/ y(t)dt

N+M-—

R M Z Ui (34)

where §; is the extrapolated frequency deviation at ¢; and M is defined as T = M.

N4+M-1

TIEMT) =10 Y. (vi—) (35)
i=N

Thus, denoting M’ = N + M — 1, we obtain:

I l

T 2
(TIEXT)) = TOZZ ERU+tM 2(Co) + tas® (tN+5) 2(C1)
=N j=N

+2tpr? (tN-l- )COU(CO,C]_)

—270% Z Z Cov(yi, Co) — 270° Z Z t;Cov(yi, C1) (36)
i=N j=N =N j=N

3.2.3 Example of f~? frequency noise

In order to use (32) the covariances Cov(Co, y-(t')) and Cov(Ch, y-(t')) must be calculated:

(CosYrpr) = % ]jg:(yi-erO - M+M J:;Zol WYi V)
N-1 N-1
= %%%_‘F_B 2 Ripe — 'ﬁ‘(m]\gﬁ ; t.Rip
= h_y [% - 2ty + T)] (37)
For Cou(Chy, y,(t')), we obtain:
Cou(Crut)) = 220 (39)

Therefore, for an f~2 frequency noise, the standard deviation of the TFE is:

V(TFEXT)) = \/ 47T2tN 1?:? (t + T)] (39)

It is interesting to notice that the DFE and the Random Frequency Error are fully separated:

V(TFEX(T)) = \/202(e) + 02(Cy) (tw + T) (40)
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Thus, if T = 0 (interpolation), the standard deviation of the TFE is /2 times the standard deviation
of the residuals, i.e. it is the standard deviation between two residuals.
Concerning the TIE, from (36), (37) and (38), we obtain:

V(TIE¥(T)) = \/ d 1h5t2T (9tn? + 13tnT + 4T2) (41)

4 CONCLUSION: CHOICE OF THE FREQUENCY MODEL

What is the physical meaning of the low cut-off frequency of an oscillator? Is it a real feature of
low frequency noises or a mathematical trick? ‘In practice, it is possible to avoid its use.

For an f~2 frequency noise, the derivative of the {requency deviation, the ageing 2(t), is a white
noise:

y(t) = /t:z(e)do (42)

where o is the switch-on date of the oscillator. In this case, we have assumed that the oscillator

was syntonized and synchronized at £o. f; is no longer necessary, y(t) is a centered random variable
whose standard deviation increases with ©:

fi

I!I

1
— 43
5 (43)
What is the “real” frequency of the oscillator over T <« ©: its nominal frequency or its mean
frequency over T'?

The answer depends on the frequency model:

o the use of the power law PSD model implies that the nominal frequency and the h, noise
levels are time-independent: they are the constants of this model. This model is suitable for
free-running oscillators, e.g. frequency standards involved in the TAI computation;

e the determination of the nominal frequency as the mean frequency over a sequence of finite
duration implies that the nominal frequency is time~dependent: this nominal frequency is
only valid over this whole sequence but neither over a part of this sequence nor over another
sequence. This model is suitable for oscillators used for an experiment of well-defined duration.
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Figure 1: Sequence of frequency deviation samples for an f~2 FM noise. Above, the duration of
the sequence is about the inverse of the low cut-off frequency. Below is an enlargement of a part of
this graph: the inverse of the low cut-off frequency is far larger than the duration of the sequence,
and the samples are no longer centered
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Figure 2: Estimation of the drift over a sequence of frequency deviation altered by f~2 FM noise
(above). The drift was estimated over the first 256 samples (256 sec). After this time, the sequence
moves away from the estimated drift. This effect is more obvious in the residuals (below).
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